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ABSTRACT 

We construct a uniformly convex hereditarily indecomposable Banach 

space, using a method similar to the one of Gowers and Maurey in [GM]~ 

and the theory of complex interpolation for a family of Banach spaces of 

Coifman, Cwikel, Rochberg, Sagher, and Weiss ([CCRSW1]), 

0.1 INTRODUCTION. In [GM], W. T. Gowers and B. Maurey constructed the 

first known example of a space without an unconditional basic sequence. Their 

space, which we shall denote by X a M ,  has even the stronger property of being 

h e r e d i t a r i l y  i n d e c o m p o s a b l e .  A Banach space X is said to be hereditarily in- 

decomposable (or H.I.) if no infinite-dimensional subspace of X is decomposable, 

that  is, no infinite-dimensional subspace of X can be written as a topological 

direct sum of two infinite-dimensional subspaces. In other words, a space X is 

H.I. if for any infinite-dimensional subspaces Y and Z of X, any c > 0, there 

exist vectors y • Y ,  z • Z ,  such that  HYll = Ilzll = 1 and IlY-Zll -< e. Later 

on, W. T. Gowers showed the following d i c h o t o m y  t h e o r e m :  every Banach 

space X contains a subspace that  is either spanned by an unconditional basis, or 

is hereditarily indecomposable ([G]). Because of this theorem, it is of particular 

interest to know about general properties of H.I. spaces. 

The space constructed by Gowers and Manrey is reflexive, however it is not 

uniformly convex. In this article, we provide an example of a complex uni- 

formly convex hereditarily indecomposable space, using a Gowers-Maurey type 
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construction; when quoting a lemma from [GM], we will denote it by the letters 

GM. Before giving some explanation of the proof, we need to fix some simple 

notation common to all spaces with a Gowers-Maurey type construction. 

Notation: In the following, by s p a c e  (resp. subspace ) ,  we shall always mean 

infinite-dimensional Banach space (resp. closed subspace). 

Let Coo be the space of sequences of scalars all but finitely many of which are 

zero. Let el, e2 , . . ,  be its unit vector basis. If E C N, then we shall also use the 

letter E for the projection from coo to Coo defined by E(~-~i°°=l aiei) = ~ i e E  aiei. 

If E,  F C N, then we write E < F to mean that  sup E < inf F.  An i n t e r v a l  of 

integers is a subset of N of the form {a, a + 1 , . . . ,  b} for some a, b E N. For N in 

N, EN denotes the interval {1 , . . . ,  N}. The r a n g e  of a vector x in Coo, written 

ran(x),  is the smallest interval E such that  Ex = x. We shall write x < y to 

mean ran(x) < ran(y); notice that  this is only defined on Coo. If Xl < " "  < xn 

we shall say that  X l , . . . ,  xn are success ive .  

Let A' be the class of Banach sequence spaces such that  (ei)i~l is a normalized 

bimonotone basis. Notice that  for p _> 1, Ip is in A'. We denote by B(Ip) the unit 

ball of Ip N Coo. 

By a b l o c k  bas i s  in a space X C A' we mean a sequence xl,  x2, • • • of successive 

non-zero vectors in X (such a sequence must be a basic sequence) and by a b lock  

s u b s p a c e  of a space X C ,V we mean a subspace generated by a block basis. 

Let f be the function log2(x+l  ). I f X  E A', and all successive vectors Xl,. •. ,  xn 
- 1  n n 

in X satisfy the inequality f (n)  )-~i=1 l[ xi]] -~ II )-~i=1 Xi][, then we say that  X 

satisfies an f - l o w e r  e s t i m a t e .  We denote by A'(f) the set of Banach spaces in 

X satisfying an f-lower estimate. 

A function h: [1, +0o) --4 [1, +00) belongs to the Schlumprecht class 5 v of 

functions if it satisfies the following five conditions: 

(i) h(1) = 1 and h(x) < x for every x > 1; 

(ii) h is strictly increasing and tends to infinity; 

(iii) l i m x - ~  x-qh(x)  = 0 for every q > 0; 

(iv) the function x/h(x)  is concave and non-decreasing; 

(v) h(xy) <_ h(x)h(y) for every x, y > 1. 

We notice that  f and v ~  belong to 9 v. 

Given X in X, given g in Y, a functional x* in X* is an (M, g)-form if I]x* ][* <_ 1 
M , , , and x* = ~ j = l  xj for some sequence x 1 < . . .  < x M of successive functionals 
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such that  tlx;lt* <_ g(M) -1 for each j .  Notice that  if X E X(f),  then every 

(M, f ) - form is in the unit ball of X*. 

Before passing to some notation specific to this article, let us give an idea 

of our construction. The space XCM satisfies an f-lower estimate; such spaces 

are easily shown to contain l~'s uniformly, so are not uniformly convex. This 

proximity to 11 is a very important  feature of Gowers-Maurey space. Indeed a 

Gowers-Maurey construction yields lower estimates for expressions of the form 

]1 ~ n l  xill, but not upper estimates. For a space close to ll, this is not a problem 

because an accurate upper estimate for such expressions is automatically given 

by the triangle inequality. But for a space close to Ip for some p > 1 as the 

one we would like to obtain, we need a better upper estimate than the triangle 

inequality. 

Classical complex interpolation is known to produce such upper estimates, and 

by a result of Cwikel and Reisner ([CR]), the interpolation space of Xo and X~ 

is uniformly convex whenever X0 or X1 is uniformly convex; so it seems a good 

idea to define our space as such an interpolation space. However, it is not clear 

that  the classical interpolation space of, say, XaM and 12 is H.I.. Gowers-Maurey 

construction seems to be too subtle to pass to the interpolate. 

To solve this problem, a solution is to make a Gowers-Maurey type construc- 

tion directly in a space X,  and to make sure at the same time that  X appears 

as the interpolate of a space close to XaM and of a uniformly convex space. To 

do this, it will be necessary to use the more complicated notion of interpola- 

tion of a family of Banach spaces (we will call this interpolation the generalized 

interpolation as opposed to the classical one). Generalized interpolation has prop- 

erties similar to the classical one with respect to uniform convexity and duality. 

Before giving its definition (all details and proofs can be found in [CCRSW1], 

[CCRSW2]), let us explain why we need such a notion. 

The dual unit ball of Gowers-Maurey space can be thought of as a ball with a 

lot of spikes (corresponding to the set of special vectors of divergent normaliza- 

tion). The existence of these spikes is the feature that  allows the H.I. property 

to appear.  To build a H.I. space by interpolation, one would need the spikes to 

be preserved by interpolation; in other words, one would need sufficiently many 

analytic functions taking values in any part  of the spikes. It  is not clear that  this 

is possible using classical interpolation; but it is made possible with generalized 

interpolation, because the spaces on the border can vary. More precisely, we will 
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build spaces Xt for t E R such that,  given a spike in the unit ball of, say, X~, if F 

is an analytic function such that F(0) is at the point of the spike, then for every 

t in R, F( i t )  defines the point of a spike in the unit ball of X~'. The existence of 

the necessary analytic functions describing spikes in the unit balls of X~' follows 

automatically. 

0.2 INTERPOLATION FOR h FAMILY OF BANACH SPACES. Notation: If F is 

an analytic function with values in Coo, then there exists an interval E such that  

for all x E S, ran(F(x))  C E. We define the r a n g e  of F to be the smallest of 

these intervals E.  We also define successive analytic functions with values in coo 

in an obvious way. 

Let q > 1 in]~, q~ such that 1 / q + l / q '  = 1. Let 0 • ]0 ,1[ ,  a n d p b e t h e  

number defined by 1/p = 1 - 0 + O/q. 

Let S be the strip {z • C: Re(z) • [0,1]}, (iS its boundary, So the line 

{z • C: Re(z) -= 0}, $1 the line {z • C: Re(z) = 1}. Let # b e t h e  Poisson 

probability measure associated to the point 0 for the strip S, that  is d#(z)  = 

Pe ( z )dz  where Pe is defined by 

Po(j  + it) = (e - r t  sin lr0)/(sin 2 It0 + (cos ~r0 - eiJ ' -~ t )2) ,  

for j ---- 0, 1, t E R. We have #(S0) = 1 - 0. Let / to  be the probability measure 

on R defined by #0(A) -= # ( i A ) / ( 1  - 0), #1 be the probability measure on R 

defined by ttl(A) = #(1 + iA)/O. Let As be the set of analytic functions F on 

S, with values in Coo, which are L1 on (iS for d/t and which satisfy the Poisson 

integral representation F(zo)  --- f~s F(z)dPzo(Z)  on S (this is well defined since 

such functions have finite ranges). If F is analytic and bounded on S, then 

F E A s .  

THEOREM 1 (Coifman, Cwikel, Rochberg, Sagher, Weiss): Let  II.llz for z in S 

be a fami ly  o f  norms  on C N , such that  z ~-~ IIx[[z is measurable for all x in C N . 

A s s u m e  these norms  are equivalent wi th  log-integrable constants  ( that  is, there 

exist  log-integrable functions c and C on S such that  for all z E S,  all x C C iv, 

c(z)ix[ _< [[xi[ z _< C(z) ix[ ,  where [.[ is the euclidean norm).  Then  for any r >_ 1, 

the following formula defines a norm on C N: 

- -  lIF(z)ll:d (z)), 
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where A N denotes the image of the canonical projection from .As into the space 

of functions from S to C N. Fbrthermore, this norm does not depend on r. It 

defines a normed space called the O-interpolation space of the family of norms 

(or equivalently, of the family of associated normed spaces). 

We now generalize this theorem to the infinite-dimensional case as follows. 

Definition 1: Let ( X ~ , z  E 6S) be a family of Banach spaces in X, equipped 

with norms If.ll , such that  for all x in Coo, the function z ~-~ Ilxllz is measurable. 

For every z, the norm I1.11  is greater than the /~ -norm and smaller than the 

/ l-norm, so over vectors of finite range N, the norms H. [[~ are equivalent with log- 

integrable constants. Let X N be ENX~, let X N be the 0-interpolation space of 

the family X N. The interpolation space of the family at 0 is defined as completion 

(UN~N x N )  • 

Remarks: Notice that  we only use finite range vectors in this construction. 

This definition coincides with the usual definition of complex interpolation for 

two Banach spaces Y0 and Y1, if we take X~ = Yi when z E Si, for i = 0, 1. 

This article is divided into three sections. In the first one, we define and s tudy 

a class Xo of uniformly convex generalized interpolation spaces; in the second 

one, we construct a particular space X in this class. In the last section, we show 

that  X is hereditarily indecomposable. 

1. A class  o f  u n i f o r m l y  c o n v e x  B a n a c h  spaces  

All the results in this section use only properties that  generalized interpolation 

shares with classical interpolation. We first specify the less general context in 

which we will use generalized interpolation. 

1.1 DEFINITION AND NOTATION. Let {Xt, t E R} be a family of spaces in X, 

equipped with norms II.llt, such tha t  for all t in R, Xt satisfies a f-lower est imate 

and for all x in Coo, the function t ~ Ilxllt is measurable. By Theorem 1, we may 

define the 0-interpolation space X of the family defined on 5S as Xt  if z = it, lq 

if z = 1 + it. We shall sometimes use for z e 6S the notation II.llz, to mean II.llt 

if z = it, and H.II¢ if z = 1 + it. There will be no ambiguity from the context. We 

shall similarly use the notation II.ll*. The notation X N stands for ENXt ,  and 

X N* for ENX~.  Also, unless specified otherwise, the measure of a subset of R 

will be its measure for/Zo. 
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Let X0 be the class of spaces X obtained in the previous way. In this section, 

we shall show some general results about elements of X0. 

1.2 PROPERTIES OF X0. Let X be in :Co and let x in X have finite range. 

Let Ao (x) be the set of functions in As that take the value x at the point 0. 

Given 0, it is the set of i n t e rpo la t i on  func t ions  for x. By definition, IIx{I is 

characterized by the following equality for any value of r >_ 1: 

,,x,,~ = inf ( L  ,,F(z)i,:d#(z)). FEAo (x) E~S 
The following theorem is a useful result of [CCRSWl 1. 

THEOREM 2: Ifx has finite range, then there is an interpolation function F for 

x, that we shaft call min ima l  for x, with ran(F) = ran(x) and such that 

IIF(it)Nt = Ilxll a.e. and  IIF(1 +it)llq = Ilxll a.e. 

LEMMA 1: The following formula is also true: for any r _> 1, 

1-0(~ )0 
"xilr= FEAoinf(x) ( [  ~ \ J R  ''F(i')'i~d#~O(f) ] ,iF(1 -P i') ,,qd#~l (') • 

Proof: First notice that for any F in Ao(x), by a convexity inequality, the 

argument in the second infimum is smaller than 

( 1 - 0 )  ( ~  ,lF(it)ii~d.uo(t)) + 0 (SR ,IF(1 + it)Hqdm (t)) 
equal to fze~s I[F(z)II~dl~(z), so that the second infimum is smaller than the first 

one. 

Now, given u e N, the map G~ defined on A0(x) by Gu(F)(z) = F(z)e "(~-°) 
is a bijection on A0 (x). Furthermore, for any u, the expressions 

(S~ II(G'<(F)(it)li~d#°(t)) 1-° (£  ,IGu(F)(1 + it)iiqdlSl(t)) ° 

and 

( £  IIF(it)ll~td#°(t)) 1-° ( £  NF(1 + it)i[~qdl~l(t)) ° 

are equal. If we choose a proper u (namely such that the two quantities 

f~ II(Gu(F)(it)li;d,o(t) and f~ I l a u ( F ) ( 1  + it)liqdm(t) are equal) ,  this is also 

equal to fze~s Ila~(F)(z)ll'=d~(z). Consequently, the two infima are actually 

equal. | 
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PROPOSITION 1: For all successive vectors x 1 < . . .  • X n in X ,  

1 ( xp)l,p ( )l,p 
I/o/10 <  L,x llp 

i----1 i = 1  

Prook It is enough to prove this in the interpolation space X N defined above, 

written in short ( ( z g ) ,  lqN)O, for any g _> 1. 

First inequality: The unit ball of X N is stable under sums of the form 
n n ~ j = l  Ajyj, where the yj are successive in the unit ball of X N and ~-~j=l IAJl = 1. 

n The unit ball of l N is stable under sums of the form ~ j = l  #jzj ,  where the zj 
?% 

are successive in the unit ball o f / ~ a n d  ~ j = l  I#j I q = 1. 

Consequently, the unit ball of X g is stable under successive sums of the form 
n 1 - -0  0 r e  ~-~j=l kj # jx j ,  whe the xj are in the unit ball of X g and Aj and #j satisfy the 

above conditions. Indeed, for every xj in the unit ball of X N, let Fj be minimal 
n - 1 - z  z F tZ~ for xj; the function F defined by F(z) = ~ j = l  aj #j j~ j is then in As  and 

n bounded by 1 a.e. on 5S, so by definition, IIF(8)I I _< 1, that  is, ~ j = l  aj'l-°#j°xj 

is in the unit ball of X N. 

Now consider any successive vectors xj in X N, and apply this stability property 
q to xj/[[xj[[ and Aj = #j = [[xj[[v/~']~= 1 ItxiH v. Using the equality 1 - 0  + 8/q = 

l/p,  one finally gets 

j = l  

This inequality will be called the u p p e r  p - e s t i ma t e  for  X. 

Second inequMity: According to [CCRSWl], the duality property is true in 

finite dimension, that  is X N* N. N. = ((X t ), lq )0. As Xt satisfies a lower f-estimate,  

so does x N ;  the dual version of this is that the unit ball of X N* is stable under 

sums of the form (1/ f (n))  n . . ~ j = x  Yj, where the yj are successive. As l~* = l N, 

we know that  its unit ball is stable under successive sums of the form ~ '=1 /zJ  zq, 

where ~-~q=l ]/zj [q! = n = 1. Letting Aj 1/ f (n)  for each j ,  and using the same proof 

as above, we get that  the unit ball of X N* is stable under successive sums of the 

form (1 / f (n)  1-°) V'n o • A.~j=I ~ j  X j .  

Now let xj be successive vectors in XN; for j -- 1 , . . . ,  n, let x~ be successive 

dual unit vectors such that x~ norms xj (we recall that the basis is bimonotone 

in every Xt, so it is bimonotone in X). We get that (1/ f (n)  1-°) E ~ ' = I    llxjll _< 
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I 
p n 1[ ~-'~j=ln xil[" Choosing #jq = [[xjl[ /~-']~,=1 [[xi[I p and using the equality O/q' = 

1 - l i p  gives the desired inequality 

1/p n 

i=1  

This inequality will be called the lower  e s t i m a t e  for  X. II 

Remark:  Gowers-Manrey space is close to 11, in the sense that  for successive 

vectors, the triangular inequality is, up to a logarithmic term, an equality. As 

the interpolation space of 11 and lq is lp, one expects the space X to be close to 

/p; the above inequalities show in what sense this is true. 

PROPOSITION 2: The  dual space X*  of  X is also the interpolation space - -  in 

the sense of  Definition 1 - -  of  the family defined on 5S as X~ i f  z = it  and lq, i f  

z =  l + i t .  

In other words, the duality property of usual complex interpolation is still true 

in our extension. 

Proof: First notice that this interpolation space is well defined, because the 

family { (X~) t ea , l q , }  satisfies the conditions of Definition 1. We recall that  a 
X oo basis ( n),~=l of a Banach space is sh r ink ing  if for every continuous linear 

functional x* and every e > 0 there exists n E N such that the norm of x* 

restricted to the span of x ,~ ,xn+l , . . ,  is at most e. The basis e l , e2 , . . ,  is a 

shrinking basis for X. Indeed, suppose it is not; then we can find e > 0, a norm-1 

functional x* E X*, and a sequence of successive normalized blocks x l , x 2 , . . .  

such that x*(xn)  >_ e for every n. Then, using the upper p-estimate, we get 
, n n ne < x (~ i=x  xi) < [[ Ei=I Xi[[ <~ n I/p, a contradiction if we choose n big 

enough. 

This implies that  given x* in X*,  Ilx*Hx. = limN-~+oo IIENx*I[x~..  But this 

means that  X* = completion I l l  X N*~. according to [CCRSWl], X N* is also kkJnEN 1, 

the interpolation space N • N . ( ( X ~ )  , la,)O, as it is easy to show that  ( x N )  * = ( X ; )  N, 

we get the desired dual property. II 

PROPOSITION 3: The  space X is uniformly convex. 

Proof: This result is similar to the result of Cwikel and Reisner in the case of 

the classical complex interpolation of two spaces ([CR]). It is enough to prove 
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that any vectors x and y in the unit ball of X N satisfy the relation 

~- -~[  _< 1 - (f(,,x - y,t) 

where 5 is strictly positive on ]0, +oc[ and does not depend on N. 

Suppose q >_ 2. Then for any vectors a and b in the unit ball of lq N, 

(the proof of this Clarkson's inequality can be found for example in [B]). Now let 

x and y be in the unit ball of X ~r, let F (resp. G) be a minimal interpolation 

function for x (resp. y) as in Theorem 2. Let us apply Lemma 1 with r = q: 

q 1--0 q 0 

q<_ (~ ~-~-(it)td#o(t)) (~ F - - ~ G ( I + i t ) q d # l ( t ) ) .  

The first integral is smaller than 1, so that 

Similarly, 

I ~ - ~  q-< (Jfa ~ - G - ( l + i t ) : d # l ( t ) )  °" 
Adding these two estimates together and using Clarkson's estimate we get 

If q < 2, the estimate is slightly different: there is a constant cq such that for 

any vectors a and b in the unit ball of l~, 

~-~ [q (-1-Cqlla-btl~. 

Applying the same method as above, we obtain 

I-~-.~ ll/° ..~. CqHX - yH 2/0 <1. 
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In both the cases q > 2 and q < 2, the inequalities above are uniform convexity 

inequalities. | 

We are now going to define particular vectors in a space X in 2(o. In [GM], 

two kinds of vectors are considered: /~+-vectors and R.I.S. vectors; /~+-vectors 

are maximal,  and R.I.S. vectors minimal with respect to the inequalities 

n 

l lt ,ll < IIZ ,ll <  llx, II 
i = 1  i = l  i = 1  

Here we consider modifications of these definitions for vectors in a space in 

Xo, taking into account that  such a space is close to lp for p > 1: these new 

vectors are called/~+-vectors (Definition 2) and again R.I.S. vectors (Definition 

3). They have the same properties as their equivalents in Gowers-Maurey space: 

minimality (Lemma 10), maximality (Definition 2), existence (Lemma 2). There 

are also properties that  link the two versions of each type of vector (Lemma 3, 

Lemma 4). 

1.3 /p+-AVERAGES. 

Det~nition 2: Let n be a non-zero integer, C a real number. 

Let X be in X. An / [ + - a v e r a g e  in X w i t h  c o n s t a n t  C is a normalized 
n vector x E X such that  x = ~ = 1  xi, where Xl < .-. < xn are successive vectors 

and each xi verifies IIx*ll < Cn-1. 

Let X be in A'o. A n / ~ + - a v e r a g e  in X w i t h  c o n s t a n t  C is a normalized 
n vector x E X such that  x = )-'~i=1 xi, where Xy < " "  < x,~ are successive vectors 

and each xi verifies [[xil[ <_ Cn -1/p. 

An l~+ ( r e sp .  lp~+) - v e c t o r  is a non-zero multiple of an l~+ (resp. Ip~+) - 

average. 

LEMMA 2: Let X be in Xo. For every n > 1, every C > 1, every block subspace 

Y of X contains an l~+-average with constant C. 

Proof: The proof is the same as in Lemma 3 of [GM]. Suppose the result is 

false for some Y. Let k be an integer such that  k l o g C  > (1 - O)logf(nk), 

let N = n k, let Xl < .." < XN be any sequence of successive norm-1 vectors 
N in Y, and let x = )-'~i=1 x i .  For every 0 < i < k and every 1 < j < n k-i,  let 

x( i , j )  =/-~t=( j -1)n '+ l  t. Thus x(0 , j )  = xj ,x (k ,  1) = x, and, for 1 < i < k, each 

x( i , j )  is a sum o f n  successive x ( i - l , j ) ' s .  By our assumption, no z ( i , j )  is an l~+- 

vector with constant C. It  follows easily by induction that  [[x(i, j)[[ _< C-~n i/p 
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and, in particular,  tha t  [[x[[ _< C - k n  k/v = C - k N  1/p. However, it follows from 

the lower est imate  in X tha t  [[x[[ _> N U P f ( N )  -(1-0). This is a contradict ion,  by 

choice of k. | 

LEMMA 3: Let X be in Xo. Let 0 < e < 1/4. Let  0 = 1/2. Let x be an Ip"+- 

average in X with constant 1 + e. Then there exists an interpolation function 

F for x with ran(F)  = ran(x),  bounded almost everywhere by 1 + e, such that 

except on a set of measure at most 2vq  , F(it)  is an l~+-vector in Xt,  of norm 1 

up to Vq, with constant 1 + 4x/q. 

Such a function is called e - r e p r e s e n t a t i v e ,  or r e p r e s e n t a t i v e ,  since we shall 

always consider /v+-averages associated to given values of e. 

n Proof: The  vector x can be written Ej=I  Xj, where xl  < . . -  < xn are suc- 

cessive vectors and each xj verifies [[xj[[ __ (1 + e)n-UP. Let F~ be a minimal 

interpolat ion function for xj,  let Fj be defined by Fi(z ) -- n-X/P'+Z/q'F~(z) and 

F let F -- ~-~j=l j. We show tha t  F is representative for x. 

Notice tha t  F(O) = x, so F is an interpolation function for x, and 

(£ )0 
1 --- ]]x]] ~ IIF(it)]ltd#o(t) HF(1 + it)llqd#l(t ) 

By choice of F ,  F is bounded by 1 + e a.e. on 5S, so both  integrals are smaller 

than  l + e .  As a consequence, fteR Hg(it)Iltd#o(t) >- (1+e)  -0 / ( l -e )  -~ 1 - e  (recall 

tha t  0 = 1/2). As for every t, HF(it)[It < 1 + e, by a Bienaym~-Tchebi tschev 

estimation, we get tha t  on a set of measure at  least 1 - 2v~  , [IF(it)lit > 1 - v/-e. 

So on tha t  set, F( i t )  is of norm 1 up to v ~. For each j ,  

IIFj(it)h -- n-1/P' l lxj l l  _< (1 + e)/n; 

so tha t  F(it)  is an l~+-vector in Xt with constant  (1 + e)/(1 - v/~) < 1 + 4Vq. 

| 

1.4 RAPIDLY INCREASING SEQUENCES. From now on, we assume tha t  0 -- 1/2. 

Definition 3: Let N be a non-zero integer. Let 0 < e < 1. 

Let X be in Xo. A sequence Xl < --- < XN in X is a R a p i d l y  I n c r e a s i n g  

S e q u e n c e  o f / p + - a v e r a g e s ~  o r  R . I . S ,  o f  l e n g t h  N w i t h  c o n s t a n t  1 + e if 

xk is an/p~_-average with constant  1 + e/nk for each k, nl >_ 4Mf (N /e ) / e f ' ( 1 ) ,  

and e/2 f (nk )  1/2 > I ran(xk_l) l  for k = 2 , . . . ,  N.  
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Here f ' (1 )  is the right derivative of f at 1 and Mf  is defined on [1, co) by 

My(x)  --- f -x(36x2) .  

In spaces Xt, we shall use R.I.S. in the Gowers-Maurey sense, that  is, sequences 

o f / ~ - a v e r a g e s  with constant 1 + e with the same increasing condition as above. 

We shall call both versions "R.I.S." without ambiguity; when using both ver- 

sions at the same time, we shall denote by Xl < " "  < xn a R.I.S. in a space Xt,  

and by X1 < " "  < X,~ a R.I.S. in an interpolation space X. 

A R.I.S.-vector is a non-zero multiple of the sum of a R.I.S. The following 

proposition links the two versions of R.I.S. 

LEMMA 4: Let X be in Xo. Let 0 < e < 1/16. Let X1 < ... < Xn be a R.I.S. 

in X with constant 1 + e. For each k, let Fk be representative for Xk; then 

F = F1 +" • • + Fn is an interpolation function for ~-~k=ln Xk, and except on a set 

of measure at most 4x/q/ f (n) ,  F(it)  is up to 2v~ the sum of a R.I.S. in Xt  with 

constant 1 ÷ 4v/~. 

Proof: I t  is clear that  F is an interpolation function for ~ k = l  Xk. According 
rtk to Lemma 3, for each k, Fk(it) is 'close' to an lx+-average, except on a set of 

measure at most 2 v~ /nk .  The union over k of these sets is of measure at most 

~-~=1 2x/e/nk <- 4v/e~ nl <- 4 v ~ / f ( n )  (this is a consequence of the increasing 

condition and the lower bound for nl in the definition of the R.I.S.). 

Now let t be in this union. For every k, let [Flk(it) denote the normalization 

of Fk(it); [F[k(it) is an l~_~-average with constant 1 + 4V/~/n k. The sequence 

lFli(it)  < .. .  < IFln(it) is a R.I.S. in Xt,  with constant supk(1 + 4V/~/nk) ~ 

1 + 4x/~ (because 1 + 4x/~ > 1 + e, the increasing condition is indeed verified). 

It  remains to show that  E(it)  and the sum of the [Elk(it) are equal up to 2v~; 

and indeed [[F(it) - ~ = 1  [F[k(it)[[t ~_ E~----I [1 - [[Fk(it)[[[t ~_ ~-~=1 X/r-~/nk ~- 

2x/~ , so tha t  the proof is complete. | 

Special sequences: We are now going to make a Gowers-Maurey type construc- 

tion, defining special sequences. We are going to define special sequences of d u a l  

i n t e r p o l a t i o n  func t ions .  The idea behind this is the following: for every t in 

I~, the set of values in t of these special sequences can be considered as a set of 

special sequences for Xt. Thus, by a Gowers-Maurey construction, we obtain 

for every t a space Xt that  "looks like" Gowers-Maurey space. But, because of 

the way we build special sequences, the special property of the Xt is somehow 

uniform on t, which allows one to carry Gowers-Maurey type estimations from 
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the spaces Xt into the interpolate. The construction of the space, which is rather 

technical, is developed in the next section. 

2. C o n s t r u c t i o n  o f  a s p a c e  X in A'e 

2.1 CONSTRUCTION OF SPACES Z t. Let J = ( J l , j 2 , . . . } ,  where (Jn),~eN is 

a sequence of integers such that  f ( j l )  > 256 and log log log j,~ > 4(j,~_1) 2 for 

n > 1. Let g = ( j l , j 3 , j b , . . . }  and L -= ( j2 , j4 , j6 , . . . ) .  Let ( L m , m  E N*) be 

a parti t ion of L with every L,~ infinite. For r C [1,+c~], let B(lr) denote the 

unit ball o f l r N c 0 0 .  For N > 1 and z E C, let f ( N , z )  = f ( N ) l - Z N  z/q' and 

g(N, z) = ~ ' - Z  N=lq'. 

Definition 4: Given a subset D of As ,  for every N > 0, a N - S c h l u m p r e c h t  

s u m  in D is a function of the form f (N ,  z) - I  ~N_l Fi, where the Fi are successive 

in D. A S c h l u m p r e c h t  s u m  in D is a N-Schlumprecht sum in D for some 

N > 0. For every N > 0, let Ztv(D) be the set of N-Schlumprecht sums in 

D, and let Z(D)  be the set of Schlumprecht sums. If D is countable, given an 

injection T from ~J,~eN ~(D) m to N, and an integer k, a spec i a l  s e q u e n c e  in 

D~ for  % w i t h  l e n g t h  k, is a sequence G1 < "'" < Gk of successive functions 

satisfying Gj E ~'n3 (D) for j = 1 , . . . ,  k, nl = j2k and nj = T(G1, . . . ,  Gj-1) for 

j -- 2 , . . . ,  k. A spec i a l  f u n c t i o n  in D,  for  T> w i t h  l e n g t h  k is a function of 

the form g(k, z) -1 ~-~=1 Gj, where G1 < . . .  < Gk is a special sequence. 

Here, it does not seem possible to define the set of special functions before 

defining the spaces Xt as in [GM], so we build them at the same t ime by induction. 

More precisely, we build by induction a set D(t) for any t, whose closure will be 

the dual unit ball of Xt, a set /), meant to be almost equal to the set of dual 

interpolation functions for the interpolation of (Xt)teR and (lq), and a countable 

set A dense i n / ) ,  meant to be the set of special interpolation functions. 

STEP 1: For every t in R, let Dl(t) = B(l~). Let / )1  be the set of functions in 

.As with values in Dl(t) for almost every it and in B(lq,) almost everywhere on 

$1. Let A1 be a countable set of functions in .As, dense in / )1  for the Ls-norm 

(namely [IF[I = f~e~s I[F(z)lildP(z)) • For this first step, we may assume that  all 

functions in A1 are continuous. Let a l  be an injection from UmeN(A1) m to L1, 

the first subset of L in the part i t ion (Lm, m E N*). Let S~ = ~. 

STEP n: We are given a set of sequences D,~-i (t) for every t in R, a s e t / ) n -1  of 

functions in As ,  a countable set An-1 of functions in A s  defined everywhere on 



212 V. FERENCZI Isr. J. Math. 

So, a subset S~ -1 of R of measure 1, and an injection an-1 from UmeN(An_I) m 

to L1 U " "  U L2n-3. Here we may not assume that  all functions in An_ 1 are 

continuous; that  is why we introduce a set Sg -1 of 'significant' values of the 

functions in A n - l ,  which we may assume to be of measure 1 because An_l  is 

countable. 

Then let A 'n  = ~ ( A n - 1 ) U  {EF, E interval, F E An- l}-  Notice that  

A'n is a countable set containing An_l.  Let rn-1 be an injection from 

UmeN(A'  \ to n n-2. 
Let $n-1 be the set of special functions in A n - l ,  for ~'=-l, with length in K.  

For every t in R, let DS(t) be the sets of sequences of the form f (g )  -1 g E i = I  Xi 

where the xi are successive in Dn- l ( t )  (that is, coming from tile usual Schlum- 

precht operation); let DI(t) be the set of sequences Ex where E is an interval 
n--1 and x is in Dn- l ( t ) ;  if t E S o , let D~(t) be the set of sequences of the form 

G(it) where G E ,Sn-m; otherwise, let D~(t) = 0 (D~(t) is the set of sequences 

coming from a special operation similar to the one in [GM], only if t belongs to 

the 'significant' set of values n-1 S O ). Let D'(t) = DS(t) U D~(t) U D~(t) and let 

Dn(t) = conv(Ul~l= 1 $D'n(t)). Let :Dn be the set of functions in .As with values 

in Dn(t) for almost every it and in B(lq,) almost everywhere on S1. 

We complete A'n  in a countable subset An of / )n ,  dense in :Dn for the Ll-norm. 

As An is countable, there is a subset S~ C S2 -1 of R of measure 1 such that  F(it) 

is indeed in Dn(t) for all F in An and for all t in S~. With an injection T" 1, 
from m tm A m UmeN(An \ A n ) to L2~-1, we obtain an injection an, from U m e N ( n )  

to L1 U . . .  U L2n-1. 

Definition of Xt: It is easy to verify that  the sequences Dn(t) for every t in ]~, 

iDn and An are increasing, that  the sequence S~ is decreasing and that  for every 

n, an coincides with an-1 on its set of definition. 

We then define Dt = UneNDn(t)  for every t in R, 1:) = Unen:Dn, A = 

UneN An, S~ ° = r]neN s~  and a the injection from UmeN Am to L whose re- 

strictions are the an. 

Finally, for every t in N, we define on coo a norm H.llt by 

Vx e Coo, Ilxlk = sup 
reD(t) 

We let Xt be the completion of Coo for this norm. 
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2 .2  PROPERTIES OF ~) AND A .  

PROPOSITION 4: 

(a) For every t in R, B(l l )  C D(t) C B(lo~). 

(b) The set A is countable, dense in D, stable under interval projections and 

Schlumprecht sums in A. 

(c) For every t in R, the set D(t) is convex, balanced, stable under interval 
projections, and sums of the form f (N)  -1 ~N=I xi, with xi E D(t) and 

X 1 , (  . . .  < X N .  

(d) The set D is convex, balanced, stable under interval projections, Schlum- 
precht sums in :D, and under taking special functions in A for a with length 

inK.  

Proof'. (a) The left inclusion is a consequence of the facts that  Dl( t )  = B(/1) and 

that  n ~ Dn(t) is increasing; for the right inclusion, notice that  by induction, 

Dn(t) C B(loo) for every n. 

(b) The set A is countable as a countable union of countable sets; it is dense in 

D because for every n, An is dense in 79n; the stability property under interval 

projections and Schlumprecht sums is ensured because for every n, An contains 

A',~, the set of projections and sums from A,~_I. 

(c) The set D(t) is convex as an increasing union of convex sets; the stability 

properties are ensured by the definition of D'~(t) and D~(t) from Dn-1 (t). 

(d) The set /)n is the set of functions with values in the convex, balanced, 

and interval projection stable sets Dn(t) and B(lq,) on 5S, so that  it is convex, 

balanced and stable under interval projections; and so is 7). 

To show the Schlumprecht stability property, it is enough, given successive 

functions F1 < . . .  < FN in Z)n-1, to show that  F = f(N,z)-IEN=IF j is in 

Z)~. For each j, Fj(it) is in D~_l(t) almost everywhere. The set of t E 1R 

such that  this happens for every j is still of measure 1. On this set, F(it) = 
( f(N)N-1/q') i t (1/ f(g))  ~N=I Fj(it) is in On(t), by the definition of On(t). In 

the same way, almost everywhere on $1, Fj(1 + it) is in B(lq,) for every j ,  so 

that  F(1 + it) is in B(lqt) too. By definition, this means that  F is in 79n. 

To show the special property, first notice that  a special function G in A is a 

special function in A,~ for some n in N. It  follows that  G(it) C D,~+I (t) for every 

t in S~, that  is, almost everywhere; furthermore, G(1 + it) is in B(lq,) almost 

everywhere; so G is in Dn+l. | 
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We now need 

the explanation 

LEMMA 5: Let 

every it and in 

Ll-norm.  

a technical lemma, which explains what we meant by 'a lmost '  in 

of the definition of 1) just after Definition 4. 

S be the set of functions in A s  with values in D(t) for almost 

B(lq,) almost everywhere on $1. Then l) is dense in S for the 

Proof: We first recall the Havin lemma from [P] in a rougher version. Further- 

more, we state it on S instead of on the unit disk of C (the two versions are 

equivalent using a conformal mapping). 

LEMMA: For every e' > O, there exists 5 > 0 such that for every subset e of SS 

with #(e) < 5, there exists g~ in H ~ ( S )  with Ige[ <- 1 a.e. on 5S, SUpze~ Ige(Z)l < 

d, and f~s [g~(z) - l[d#(z) _< e'. 

Let F be in S, 0 < e < 1. Let N be such that  ran(F)  C EN. Now let 5 be 

associated to e' = e /N  in the above lemma. The sequence of sets (Tn)neN defined 

by Tn = {t: F(it)  C On(t)} is increasing and its union is of measure 1 for #0, 

so there exists n such that  Tn is of measure at least 1 - 5. For #, 5S \ iTn is of 

measure at most 5(1 - 8) < & Let H be the function g~s-.iT~. Let [~ = H.F.  

The func t i on / :  is in As .  Furthermore , / : (1  + it) is in B(lq,) almost everywhere 

on $1, /:(it) is in D~(t) almost everywhere on Tn; this last assertion is also 

true on So \ Tn, because almost everywhere on this set, /:(it) is in 1 /N  D(t) 

and because, for functions of range at most EN, we have, with a slight abuse 

of notation, the following inclusions: 1IN Oft) C 1 / g  B( l~)  C B(/1) C D,~(t). 

This proves t h a t / :  is in l)n. 

I t  remains to show that  F - / :  is small in the Ll-norm, and indeed: 

~ ]](F /:)(z)][ld#(z) (_ Y f ] H ( z ) -  1]d#(z) _< e. II 
S .15S 

2.3 DEFINITION OF X.  For every x in Coo, the function t ~ Ilxllt is measur- 

able. To see it, it is enough to prove that  the restriction of the function to 

S ~  is measurable. We prove this by induction on I ran(x)l. Remember  that  

]]x][t = SUpyeD(t) i(X, y)[. Now let y be in D(t); then y is a convex combination of 

elements of the following form: either elements of B(ll),  or values in it of projec- 

tions of special functions, or n-Schlumprecht sums with n > 1. The supremum 

]]x]]t is certainly attained in an element of one of these three kinds, so that  

Ilxll  = I1 11  V sup I(x, E G ( i t ) ) ] V  sup 1 IlSj ll . 
G speciaI,E n>2,£I < " ' < £ .  f ( n )  j = l  
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In the last supremum, 81 < "'" < $n are any successive intervals. We may 

restrict this supremum to the finite set of intervals £j contained in ran(x) and 

different from it. The first supremum is over a countable set. Finally, t ~ ]Ix]it 

is the supremum of a countable family of measurable functions by the induction 

hypothesis, so it is a measurable function. 

Fhrthermore, it follows from the stability property of D(t) that  for every t in 

~, X t  satisfies an f-lower estimate. So all the conditions are satisfied for the 

definition of a space in X0. 

Definition 5: We denote by X the space ((Xt),lq)O of We. 

LEMMA 6: Let F* E :D. Then F*(O) is in the unit ball of X*. 

Proof." First notice that  if we restrict them to finite range vectors, it is a con- 

sequence of their convexity and of the definition of If-lit that  the unit ball of X~' 

and D(t) coincide. Now, given F* in :D, it is of finite range. For almost every t, 

F*(it) C D(t), so that  by the previous remark, [[F*(it)[[; < 1. Furthermore, 

]iF*(1 + it)liq, _< 1, so by Proposition 2, IIF*(0)]I* ~ 1. I 

We now state two lemmas that  are an easy modification of Lemma GM7 of 

[GM] for the first one and a mixture of Lemmas GM8 and GM9 of [GM] for the 

second one. 

LEMMA 7: Let f ,  g C .~ with g > V-f, let X G X satisfy a lower f-estimate, let 

0 < e < 1, let xl  < . . .  < XN be a R.I.S. in X for f with constant 1 + e, and let 

x = ~-~.g=l xi. Suppose that 

[IEx[] _< 1 v sup{Ix*(Ex)[: M >_ 2,x* is an (M,g)-form} 

for every interval E. Then Hx][ < (1 + 2e)Yg(Y)  -1. 

LEMMA 8: Let Ko C K.  Let ¢: [1, c~) ~-+ [1, c~) be defined by 

¢(x) = V / ~  if  x e go,  ¢(x) = f (x )  otherwise. 

Then there is a function g: [1, c~) ~-~ [1, c~) such that: g E ~ ,  v/-f < g <_ ¢ <_ f ,  

and if  N E J \ Ko, then g = f on the interval flog N, expN]. 

Now we prove that  the property of minimality of the R.I.S., an important 

feature of Gowers-Maurey space, is also true in every Xt  (Lemma 9), and in X 

(Lemma 10). 
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LEMMA 9: Let t E I~. Let N C L, let n E [log N, expN], let 0 < e < 1, and  let 

Xl < ""  < x~ be a R.I.S. in Xt  with constant 1 + e. Then 

~ x ~  <<_ (l + 2e)n/ f (n) .  
i=1 

Proof: T h e  space Xt E X satisfies a lower f -es t imate .  

Let  x be  the sum of the  R.I.S. xl  < .." < x,~. Let E be any interval. Let ¢ 

be  the f imction defined in L e m m a  8 in the case K0 = K and g associated to ¢ 

by the same  lemma.  The  vector  Ex  is normed by a functional x* in D(t). If x* 

is in Dl(t) ,  then  IIExllt = Ix*(Ex)l _< 1. Else there exists m > 2 such t ha t  x* 

is in Dm(t) \ Dm-l ( t ) ;  then, by definition of Din(t), x* is a convex combina t ion  

of (M, f ) - fo rms  with M _> 2 and (M, yr f ) - forms  with M E K;  since g < ¢, it 

follows tha t  x* is a convex combinat ion  of (M, g)-forms with M > 2; so Ex  can 

be normed  by an (M, g)-form. Consequently, 

I[Exllt ~_ 1 vsup{Ix*(Ex)l: M ~ 2, x* is an (M,g)-form} 

Since g E 9 v and g :> v ~ ,  all the hypotheses  of L e m m a  7 are satisfied. I t  follows 

tha t  ]I :~-~i~1 xiilt < (1 + 2e)n/g(n). By L e m m a  8, g(n) = f (n ) ,  which proves our 

s t a tement .  I 

LEMMA 10: We recall tha t  X denotes the space given by Definition 5. Let 

N E L, let n E [ logN, expN],  let 0 < e < 1/16, and let X1 < .. .  < Xn be a 

R.I.S. in X with constant 1 + e. Then 

~ Xi < (1 + lOv~)nl /P/ f (n)  1-°. 
i=1 

Proof'. Let Fk be representat ive for Xk, and F = F1 + .." + Fn. We know tha t  

F is an in terpolat ion function for X1 + --" + X~ so 

n 1-O 0 

i~=l xi<- (~ IlF(it)lltdlz°(t)) ( f R  I[F(a q-it)[lqdlza(t') " 
For the  second integral, the following es t imate  holds: 

R liE(1 + i t ) l lqdm(t  ) _< (1 + e)n 1/q. 

According to L e m m a  4, there is a set A of measure  at  most  4x/7 / f (n  ) such tha t  

on R \  A, F(it)  is up to 2 v ~  the  sum xt of a R.I.S. in Art. On ~ , \  A, IIF(it)llt < 
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IIx& + 2vq; furthermore, xt is a R.I.S. in Xt with constant 1 + 4x/q , so that  by 

Lemma 9, I1~11~ _< (1 + 8x,~)n/ f(n ). On A, we have only IIF(it)llt < (1 + e)n. 

Gathering these estimates, we get 

[ n ]4 1 n 
[[F(it)[[td#o(t) < (1 + 8x/~) f - -~  + 2Vq + f---~( + e)n ~ (1 + 15x/~)f(n ). 

Going back to the R.I.S. X1 < . . .  < X,~, we have 

n nl_O+O/q 

~- ;X i  ~_ (1 + 15x/~)1-°(1 -k e) ° f (n ) l_  o ~_ (1 -k 1 0 x / ~ ) - -  
i----1 

nl/P 

f(n)l-O" 

The following lemma is similar to Lemma G M l l  in [GM]. 

LEMMA 11: Let t E l~. Let N E L, let 0 < e < 1/4, let M = N ~ and let 

Xl < "" < xN be a R.I.S. in Xt  with constant l + e. Then ~-~N=l xi is an 

llM+-vector in X t  with constant 1 + 4e. 

Proof: Let m = N / M ,  let x = ~-~.N=lxi and for 1 < j < M let yj = 
jm 

~-~4=(j-1)m+1 xi. Then each yj is the sum of a R.I.S. of length m with con- 

stant (1 + e). By Lemma 9 we have IlYjllt <- (1 + 2e)mf(m) -1 for every j while 

II ~-~=1Yjllt = ]lxll >- N f ( N )  -1. It follows that  x is an/ l~-vector  in Xt with 

constant at most (1 + 2 e ) f ( N ) / f ( m ) .  But m = N 1-~ so f ( g ) / f ( m )  < (1 - e) -1. 

The result follows. | 

We now pass to the crucial lemma of this construction. It is the equivalent of 

Lemma GM12 of [GM], but involves vectors in Xt  for some t and special dual 

functions. Its proof is essentially identical to the one of Lemma GM12. 

LEMMA 12: Let eo = 1/10. Let k E K and F ~ , . . . , F ~  be a special sequence 

of length k, with F* E ~Mi(i).  Let t E S ~ .  Let Xl < "" < xk a sequence of 

successive vectors in Xt,  where every x/ is a normalized R.I.S.-vector of length 

Mi and constant 1 + e0/4. Suppose ran(F*) C ran(xi) for i = 1 , . . . , k ,  and 

1/2 col(M:°~4) 1/2 > t ran(x/_l)[ for i = 2 , . . . ,  k. 

I f  for every interval E, I ( ~ = ,  F*(t))(~-~=l Ex/)[ < 4, then 

k 
x / <  (1 + 2 o)k/f(k). 

i=1 

Proof: First we recall two lemmas from [GM]. 
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LEMMA GM4: Let M , N  C N and C > 1, let X E X,  let x C X be an 1N+ - 

vector with constant C and let 81 < "'" < ~M be a sequence of intervaJs. Then 

~ M  1 [l£jxl[ _< C(1 + 2M/N)t[x[[. 

LEMMA GMh: Let f , g  E jr with g > fl/2 and let X E X satisfy a lower f -  

estimate. Let 0 < e < 1, let Xl < . "  < XN be a R.I.S. in X with constant 1 + e 

and let x = Y~N=I xi. Let M > M l ( g / e ) ,  let x* be an (M,g)-form and let E be 

any interval. Then [x*(Ex)[ <_ 1 + 2e. 

According to Lemma 11, each xi is an/N¢-average with constant 1 + e0, where 

Ni = M:  °/a. The increasing condition and the lower bound for M1 ensure tha t  

xl < . . -  < xk is a R.I.S. in Xt  of length k with constant 1 + co. 

To prove this Lemma we shall apply Lemma 7. First, we show tha t  if 

G ~ , . . . ,  G~ is any special sequence in A of length k and E is any interval, then 

[z*(Ex)[ < 1, where z* is the (k, V~)-form f ( k )  -1/2 Eki=l Z~ with z~ = G;(it) ,  
k 

and x = ~ i = 1  xi. 

Indeed, let s be maximal such that  G 8 = F~ or zero if no such s exists. 

Suppose now i ¢ j or one o f i , j  is greater than s + l .  Then since a is an 

injection, we can find L1 ¢ L2 E L such that  z~ is an (L1, f ) - form and xj is the 

normalized sum of a R.I.S. of length L2 and also an lL~-average with constant 

1 + eo, where L~2 = L2 °/4. We can now use Lemmas GM4 and GM5 to show that  

[z*(Exe)l < k -2. 

If L1 < L2, it follows from the lacunarity of L that  Lt  < L~. We know tha t  

L1 >_ j2k since L1 appears in a special sequence of length k. Lemma GM4 thus 

gives [z~(Exj) I = I(Ez*)(xj)l <_ 3 ( l + e 0 ) / f ( L 1 ) .  The conclusion in this case now 

follows from the fact that  f(1) >_ 4k 2 when l >>_ j2k. 

I f  L2 < L1, we apply Lemma GM5 in Xt with e = 1 to the non-normalized 

sum x} of the R.I.S. the normalized sum of which is xj.  The definition of L 

gives us tha t  MI(L2 ) < L1, so Lemma GM5 gives [z~(Ex}) I _ 3. It  follows from 

the lower f -es t imate  in Xt  that  IIx~ll > n2 / f (L2) .  The conclusion now follows 

because l > j2k implies that  f (1)/ l  <_ 1/4k 2. 

Now choose an interval E ~ such that  
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It  follows that  

( ~  (Ex)l <- 4 + [Z*+l(Xs+l)[ T k2"k-2 <- 6" 

We finally obtain that  [z*(Ex)[ < 6f(k) -1/2 < 1 as claimed. 

Now let ¢ '  be the function 

dp'(x) = V ~  if x e K, x ¢ k, ¢ ' (x)  = f(x) otherwise. 

Let g' be the function obtained from ¢'  by Lemma 8 in the case K0 = K \ { k } ;  

we know tha t  g'(l) = f(1) for every l e n U {k}. 

It  follows from what we have just  shown about  special sequences of length k 

that  for every interval E,  

][Exllt ~ 1 v sup{lx*(Ex)[: M > 2,x* is an (M,g ' ) -form}.  

Since x is the sum of a R.I.S., Lemma 7 implies tha t  t]xllt <_ (1 + 2eo)kg'(k) -1 = 

(1 + 2eo)k/f(k). | 

3. X is h e r e d i t a r i l y  i n d e c o m p o s a b l e  

Let Y and Z be two infinite-dimensional subspaces of X. We want to show that  

their sum is not a topological sum. We may assume that  Y n Z = {0}. Let 5 > O. 

We shall build two vectors y E Y and z E Z such that  6]ly + z]] > IlY - zll. The  

existence of such vectors for any (i > 0 easily implies that  the canonical projection 

from Y + Z onto Y is not continuous. 

Let e0 = 1/10. Let k E K be an integer such that  1/4 < e0 kl/p/f(k)  1-° and 
2 / v f ~  1-° < 6, and let e > 0 be such tha t  v ~ < eo/4kf(k). We may assume 

tha t  both  Y and Z are spanned by block bases. We now build a sequence (xj)k=l 

in X by iteration. 

3.1 PROPOSITION: Let Y, Z, k be as above. There exist successive sequences 

(Fj) of interpolation functions, (Jr]) of dual interpolation functions, (xj) of 

vectors in X,  (x~) of linear forms in X*, and a sequence (Mj) of integers such 

that: 

xj is a norm 1 R.I.S. vector with length M i and constant 1 + e, belonging 
to Y when j is odd, to Z otherwise; 
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x~ is of norm at most 1; 

S-; , . . .  ,S-~ is a special sequence of length k, with S-~ E ~]Mj(A), 

xj = Fj(O) up to 10x/~ and x; = S-;(O); 

for j = 1 , . . . ,  k, ran(S';)  C ran(x;)  C ran(xj) = ran(Ej); 

M1 = j2k and for j = 2 , . . . ,  k, 1/2eof(M~°/4) 1/2 > I ran(Fj-1)[;  

for every j ,  (.T';(O),Fj(O)) = 1 up to e; 

for every j ,  except on ~ of measure at most 2v~, (s-;(it), Fj(it)) = 1 up 

to 2v~; 

for every j ,  except on ~ '  of measure at most 4 v ~ / f ( M j )  , Fj(it)  is up to 

10v~ the normalized sum of a R.LS. with constant 1 + 4v~ < 1 + e0/4. 

Proof'. We build these sequences by induction. We first explain how we define 

the first elements of the sequences. 

FIRST STEP: By Lemma 2, Y and Z contain, for every N E N, an lB,-average 

with constant 1 + e. Let Xl E Y be a R.I.S.-vector of norm 1, constant 

1 + e and length M1 = j2k; we have M~ °/4 -=- N1 > 4Mf(k /eo) /eof ' (1) .  Let 

Xll < "'" < XlM1 be the R.I.S. whose normalized sum is xl: there exists A1 such 

that AlXl = Xll + " "  + XlM1. Applying the lower estimate in X and Lemma 10, 

we get 

M : I P l f ( M 1 )  1-° < II,hzlll _< (1 + IOx/7)M~IPlf(M1)I-° , 

so that  ~1 = Mll /Pl f (MI)  1-° up to the multiplicative factor 1 + 10x/7. 

Now for m = 1 , . . .  ,M1, we associate to xl,~: 

a representative function Flm for Xlm; 

a vector x~m in X* that norms xlm and with ran(x~m ) C ran(xa,,~); 

a minimal interpolation function F~* m for X~m; it exists because of 

Proposition 2 and because, as X~m is of finite range, Theorem 2 applies. 

The function F~m is in 5.  Indeed, remember that if we restrict them to finite 

range vectors, the unit ball of X~ and D(t) coincide; so by the convexity of D(t),  

for every u > 0, the function F~ml(1 +v)  takes its values in D(t) for almost every 

it; as it takes its values in B(lqr) a.e. on $1, it is in S, which ends the proof that  

F~m is in S. 

By Lemma 5, F~m can be approached by a function S-~*m in A; and because of 

the interval projection stability of A, we may assume that ran(s-~'m) C ran(F~*m). 

More precisely, we suppose that  S-~'m is close to F~m up to e/(1 + e) for the norm 
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fze~S II.]l*d#(z) • This is possible because over functions of finite range, this norm 

is smaller than the norm f ,e~s  N.I]ld#(z) first introduced. 

Lastly, we define two functions: 
• - - 1  M 1  , , Let ~'~ = f (M1,  z) Ern----1 ~'~'m' It  belongs to A. Let x 1 = ~1 (0)" 

Let F1 f (M1, z )M~ 1 M, = E m = l F l m .  

ITERATION: To simplify the notation, we show how to pass from the first step 

to the second. It will be clear that  we can repeat the same procedure at any step 

until k. 

Let M2 = er(9~) E L. We may assume that  we chose 5e~ ' such that  M2 satisfies 

1/2 eof(M2°/4) 1/2 >_ I ran(F1)l. Indeed, as A is dense inS ,  for every m, there are 

infinitely many possible choices for the functions )r~., leading to infinitely many 

possible values for M2, all different because a is an injection. So we can assume 

that  M2 is as big as we want, in particular, that  it satisfies the above inequality. 

Let x2 be a R.I.S.-vector of norm 1 in Z, with constant 1 + e and length/142, 

satisfying x2 > Xl. We then define x~, F2, 9v~ in the same way as in the first 

step of the iteration. 

Of the proposition, only the last three points are not obvious and remain to 

be checked. 

For  e v e r y  j ,  (.~;(O),Fj(O)) = 1 u p  to  e. 

For F and F* in .As, define (F, F*) to be L e a s ( F ( z ) ,  F*(z)}d#(z), and notice 

that  this is equal to (F(0), F*(0)} by analyticity. Now for every j ,  

M, 
1 

m=l 
If we replace each ~'~m by F~m , the sum is equal to 

Mj 
1 E ( X l m ' X j m }  = 1. 

i J  m=l 

Ms , The error we make by doing this is I1/Mj ~m=l(~ '~m - F~m , Fjm)l, smaller 

than 

~ 1  ~ Mm~__a" 1 
1 - - -  7-7--. ( e  1 1 H (~'~*~ - F~*~)(z)H* IIFjm(z) Ldu(z)  < + e) <_ £ 

(we recall that  as Fjm is representative for xjm, ]]Fim(Z)]]z < 1 + e almost 

everywhere). 
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For  e v e r y  j ,  e x c e p t  o n  ~ o f  m e a s u r e  a t  m o s t  2v/~, (?~(it), Fj(it)) = 1 
u p  t o  2v/e. 

M1 * Let/7~ be the function f(M1, z) -1 Em=l Fjm. It  is easy to see that  

1 = ~ (F:(z), Fj(z))d#(z), 
ESS 

while 

(F:(z),Fj(z)> <_ l + c  a.e. 

By a Bienaym~-Tchebitschev estimation, except on a set of measure at most 

v ~, (Fj*(z), Fj(z)} = 1 up to x/~. ~ r t h e r m o r e ,  we know that  

~z I((.~ - F~)(z), Fj(z)}ld#(z ) <_ e 
EhS 

so tha t  except on a set of measure at most v ~, ((hv: - F ~ ) ( z ) , F j ( z ) }  = 0 up 

t o  vf~. 

Adding these two estimates completes the proof. 

Fo r  e v e r y  j ,  e x c e p t  on  ~ o f  m e a s u r e  a t  m o s t  4x/~/f(Mj) , Fj(it) is u p  

t o  10x/~ t h e  n o r m a l i z e d  s u m  o f a  R . I .S .  w i t h  c o n s t a n t  1 +4v/~ <: 1 +e0/4.  

For each m, Fjm is representative for Xjm, SO by Lemma 4, except on a set J j '  

of measure 4v/~/f(Mj), we have 

M~ 

m = l  

where xt is the sum of a R.I.S. in Xt with constant 1 + 4v/e. So 

f(M ) I < 2:f(M ) 2:. 

The proof follows, because by Lemma 9, 

Mj//f(Mj) ~ Ilxtll~ _ (1 + 8v~)Mjlf(Mj), 

so f(M~)/M3 xt is up to 8v:e a normalized R.I.S.-vector. II 
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3.2 THE SPACE X IS HEREDITARILY INDECOMPOSABLE. The proof relies on 

a lower estimate for ]1 ~ = 1  xJll and on an upper estimate for It ~k=l(--1)Jxjlt" 
The lower estimate comes from the fact that  the special sequence ~ ,  ., k 

norms the sequence x l , . . . ,  xk. The upper estimate is the estimate of Lemma 12 

in each Xt carried over to X by Lemma 1. 

Estimation of I[ k 6* -1 k * ~-~j=l xj[[: Let --- g(k,z) ~j=l~ ' j .  Since, by construction, 

the sequence .T'~',..., 5r~ is special, ¢* is i n / )  and, by Lemma 6, x* -- G*(0) is 

in the unit ball of X*. 
k X* k So [[ ~.j=l Fj(0)][ _> (Ej_-I Fj(O)) ~_ (1 - e ) k l / p / ~ ~  1-0, and 

k 
E X j  ~ ( 1 - E o ) k l / P / x / f ~ l - e - 1 / 4  > ( 1 - 2 e o ) k l / P / k / ~ l - ° .  

j = l  

The 1/4 is the error we made by replacing the xj's by the Fj(0)'s. 

Estimation of[[ ~ = 1  ( - 1 ) J - l x j  [1: Let ,7 be the union of the J j ' s  and the ,Yj~'s. 

The set J is of measure at most 6kx/~. 

For every t in ]~ \ J ,  for every interval E,  let us evaluate 

This is a sum of at most k scalars. Those who come from terms of range 

included in E are equal to ( -1 )  j-1 up to 2v'~, so that  their sum is - 1 ,  0 or 1 

up to 2k~/-~; two others can come from terms whose range intersects E,  they are 

bounded in modulus by 1 + 10v~; the others are equal to 0. So the sum is smaller 

than 1 ÷ 2kv~ + 2(1 + 10v~ ) < 3 + 3kvfe. 

For every j, Fj(it) is up to 10v~ a R.I.S. vector xj(t). The ( - 1 ) J - l x j ( t ) ' s  

satisfy the hypotheses of Lemma 12: the increasing condition is satisfied, and for 

every interval E,  

it - 1 )  5 1Exj(t <_ 3 ÷ 3 k v ~ ÷  10kv~ < 4. 
\ j - ~ l  ] 

It then follows from the conclusion of Lemma 12 and the relation between Fj (t) 
and xj(t) that  

k 

E( -1 )J - lF j ( i t )  t < (1 + 2eo)k/f(k) + 10kx/~. 
j----1 
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It follows that  
k 

 (-llJ-lFj(it) redo(t) <_ (1 + 2 o)k/f(k) + lOkZT. 
R \ J  j--1 

We now want to estimate the integral of this same norm on .7. It is enough, 

by the triangle inequality, to evaluate f t~j  II Fj (it)Iltd#o (t). If t belongs to Jj~, by 

the triangle inequality, I[Fj(it)Ht <__ (1 + ~)f(Mj), but recall that Jj~ is of measure 

at most 4x/~/f(Mj); else, Fj(it) is up to 10x/e a normalized R.I.S. vector, so that  

IIFj(it)llt _< 1 + 10x/~ , and this on a set of measure less than 6kx/~. Finally, 

J j  4V~ "1 IIFj(it)lltd#o(t) <_ 6kx/~(1 + 10x/~) + f - -~ j )  ( + e)f(Mj) < 7kx/~ 

and 
k 

It follows from these two estimates that 

(-1)J-lFj(it) d.o(t) <_ (7k2+10k)v~+(1+2e0) < ( l+4e0)f~) .  

Furthermore, almost everywhere on $1, 

k 

~(-1)5-~Fj(1 + it) q< (1 + e)k i/q, 
j = l  

so that,  by Lemma 1, 
k 

y'~J-1)5-~Fj(0) < (1 + 3eo)kl/P/y(k)l-°, 
j = l  

and 
k 

~(-1)5-1x5 < (1 + 3eo)ki/'/f(k) 1-° + 1/4 < (1 + 4eo)kl/P/f(k) 1-°. 
j = l  

Conclusion: Let y E Y be the sum of the xj with odd indices, z E Z be the 

sum of the xj with even indices. By the above estimates and by choice of k, they 

satisfy ~llY+Zlt > IlY-Zll. As ~ is arbitrary and so are g and Z, X is hereditarily 

indecomposable. | 
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